
Training: Node.js Application Architecture

Page: 1/4Bottega IT Minds http://www.bottega.com.pl

Info:

Training program:

Node.js Application Architecture

Name: Node.js Application Architecture
Code: modern-Node
Category: Node.js

Target audience: developers
architects

Duration: 2-3 days
Format: 20% lecture / 80% workshop

Node.js provides more freedom compared to traditional enterprise ecosystems. Although some
individuals are attempting to transform Node.js into a framework-heavy enterprise platform, there is an
alternative approach.

In this course we will learn how to build highly and systems composable, type-safe testable without
 If you have an aversion to magic or wish to unlearn years of a typical enterprise framework magic.

practices such as using:

Dependency Injection containers
Class-based programming
ORMs
Technology-driven architectures
Magical conventions
@Transactional dandruff
new Date() spread all over the place
Handwritten DTOs
Import mocking frameworks
Reflection and metaprogramming magic

This course is for you. The alternative to heavy enterprise frameworks is not Wild Wild West or building a
custom framework. The real alternative is to , make full use of embrace the true nature of JS/TS the

and never get prisoned in another heavy framework again.good parts

What will I learn?
Compose your building blocks with multiple composition roots and manual dependency injection
Make full use of extremly composable functions instead of less composable classes
Write type-safe DB access code that stays in sync with DB schemas and prevents you from
mistakes
Parse don’t validate your input and output data to be liberal in what you accept and strict in what
you produce
Organise your code around features, not technology layers
Handle DB transactions without magic
Program in a language, not in a framework
Test with high ROI with smart testing strategies
Make code testable and don’t let more than one invocation of new Date() sneak into your code
Start your app in full in-memory mode by default
Separate write model and read model
Master transferrable skills that will outlive your enterprise framework du jour

Training: Node.js Application Architecture

Page: 2/4Bottega IT Minds http://www.bottega.com.pl

Master transferrable skills that will outlive your enterprise framework du jour

Training: Node.js Application Architecture

Page: 3/4Bottega IT Minds http://www.bottega.com.pl

Training program

1. Engineering techniques and principles

1.1. Minimal dependencies

1.2. Curried functions over classes

1.3. Parse don’t validate

1.4. Robustness principle

1.5. Full in-memory mode by default

1.6. Feature-driven architecture

1.7. Composition over convention

1.8. End-to-end type safety

1.9. Programming in a language, not in a framework

1.10. Feature-flag driven development

2. Architectural building blocks and concepts

2.1. Pipes and filters (express.js middleware and handlers)

2.2. Ports and adapters

2.3. Routers/controllers (express.js)

2.4. Application services

2.5. Repositories

2.6. Error handlers

2.7. Domain types and tiny types

2.8. Input and output parsers

2.9. DTOs for free

2.10. Composition roots

2.11. Write model vs read model

2.12. External read model (view model) vs internal read model

Training: Node.js Application Architecture

Page: 4/4Bottega IT Minds http://www.bottega.com.pl

2.12. External read model (view model) vs internal read model

2.13. Application scope and request scope

3. Testing strategies

3.1. Unit of behavior tests (mocha)

3.2. Integration tests (mocha)

3.3. Component tests (supertest)

3.4. Testing without mocks

3.5. Testing difficult dependencies (time, id generation)

3.6. Data cleanup strategy

4. Integration with a SQL database

4.1. DB migrations

4.2. Type generation from DB schema

4.3. Verifying repository contract

4.4. SQL query builder

4.5. Handling DB transactions

5. Type-safety

5.1. Type-safe config (zod)

5.2. Type-safe DB queries (kysely)

5.3. Type-safe input and output (zod)

5.4. Type-safe dependency injection

5.5. Type-safe API paths (static-path)

